How do you find (dy)/(dx)dydx given e^siny+y=x^2esiny+y=x2?

1 Answer
Aug 30, 2016

dy/dx=(2x)/(e^sinycosy+1)dydx=2xesinycosy+1

Explanation:

Differentiate both sides. Recall that the chain rule will be put into effect.

d/dx(e^siny+y=x^2)ddx(esiny+y=x2)

This gives us:

e^sinyd/dx(siny)+dy/dx=2xesinyddx(siny)+dydx=2x

Reapplying the chain rule:

e^sinycosydy/dx+dy/dx=2xesinycosydydx+dydx=2x

Solving for dy/dxdydx:

dy/dx(e^sinycosy+1)=2xdydx(esinycosy+1)=2x

Thus:

dy/dx=(2x)/(e^sinycosy+1)dydx=2xesinycosy+1