How do you find #(dy)/(dx)# given #e^siny+y=x^2#?
1 Answer
Aug 30, 2016
Explanation:
Differentiate both sides. Recall that the chain rule will be put into effect.
#d/dx(e^siny+y=x^2)#
This gives us:
#e^sinyd/dx(siny)+dy/dx=2x#
Reapplying the chain rule:
#e^sinycosydy/dx+dy/dx=2x#
Solving for
#dy/dx(e^sinycosy+1)=2x#
Thus:
#dy/dx=(2x)/(e^sinycosy+1)#