How do you find (dy)/(dx)dydx given e^siny+y=x^2esiny+y=x2?
1 Answer
Aug 30, 2016
Explanation:
Differentiate both sides. Recall that the chain rule will be put into effect.
d/dx(e^siny+y=x^2)ddx(esiny+y=x2)
This gives us:
e^sinyd/dx(siny)+dy/dx=2xesinyddx(siny)+dydx=2x
Reapplying the chain rule:
e^sinycosydy/dx+dy/dx=2xesinycosydydx+dydx=2x
Solving for
dy/dx(e^sinycosy+1)=2xdydx(esinycosy+1)=2x
Thus:
dy/dx=(2x)/(e^sinycosy+1)dydx=2xesinycosy+1