How do you find #(dy)/(dx)# given #ln(xy)=cos(y^4)#?
1 Answer
Jun 23, 2017
Explanation:
Differentiate as normal, but remember that differentiating any function of
First, we can simplify the natural logarithm function using
#lnx+lny=cos(y^4)#
Then, differentiating:
#1/x+1/ydy/dx=-4y^3sin(y^4)dy/dx#
Group the
#1/ydy/dx+4y^3sin(y^4)dy/dx=-1/x#
#dy/dx(1/y+4y^3sin(y^4))=-1/x#
#dy/dx=(-1/x)/(1/y+4y^3sin(y^4))#
Multiplying the fraction by
#dy/dx=(-y)/(x+4xy^4sin(y^4))#