How do you find (dy)/(dx)dydx given -x^3y^2+4=5x^2+3y^3x3y2+4=5x2+3y3?

1 Answer
Nov 22, 2016

dy/dx=-(10x +3x^2y^2)/(2yx^3+ 9y^2) dydx=10x+3x2y22yx3+9y2

Explanation:

-x^3y^2 + 4= 5x^2+3y^3x3y2+4=5x2+3y3
" "
rArr-3x^2y^2+2ydy/dxxx(-x^3)=10x + 9y^2xxdy/dx3x2y2+2ydydx×(x3)=10x+9y2×dydx
" "
rArr-3x^2y^2-2yx^3dy/dx=10x + 9y^2xxdy/dx3x2y22yx3dydx=10x+9y2×dydx
" "
rArr-2yx^3dy/dx- 9y^2xxdy/dx=10x +3x^2y^2 2yx3dydx9y2×dydx=10x+3x2y2
" "
rArrdy/dx(-2yx^3- 9y^2)=10x +3x^2y^2 dydx(2yx39y2)=10x+3x2y2
" "
rArrdy/dx=(10x +3x^2y^2)/(-2yx^3- 9y^2) dydx=10x+3x2y22yx39y2
" "
rArrdy/dx=-(10x +3x^2y^2)/(2yx^3+ 9y^2) dydx=10x+3x2y22yx3+9y2