How do you find (dy)/(dx) given -x^3y^2+4=5x^2+3y^3?

1 Answer
Nov 22, 2016

dy/dx=-(10x +3x^2y^2)/(2yx^3+ 9y^2)

Explanation:

-x^3y^2 + 4= 5x^2+3y^3
" "
rArr-3x^2y^2+2ydy/dxxx(-x^3)=10x + 9y^2xxdy/dx
" "
rArr-3x^2y^2-2yx^3dy/dx=10x + 9y^2xxdy/dx
" "
rArr-2yx^3dy/dx- 9y^2xxdy/dx=10x +3x^2y^2
" "
rArrdy/dx(-2yx^3- 9y^2)=10x +3x^2y^2
" "
rArrdy/dx=(10x +3x^2y^2)/(-2yx^3- 9y^2)
" "
rArrdy/dx=-(10x +3x^2y^2)/(2yx^3+ 9y^2)