First, find g(-3)g(−3) by substituting color(red)(-3)−3 for each occurrence of color(red)(x)x in g(x)g(x):
g(color(red)(x)) = 3color(red)(x)g(x)=3x becomes:
g(color(red)(-3)) = 3 xx color(red)(-3)g(−3)=3×−3
g(color(red)(-3)) = -9g(−3)=−9
Therefore: f(g(-3)) = f(-9)f(g(−3))=f(−9)
Because g(-3) = -9g(−3)=−9 then f(g(-3)) = f(-9)#
To find f(-9)f(−9) we can substitute color(red)(-9)−9 for each occurrence of color(red)(x)x in f(x)f(x)
f(color(red)(x)) = 2color(red)(x) - 1f(x)=2x−1 becomes:
f(color(red)(-9)) = (2 xx color(red)(-9)) - 1f(−9)=(2×−9)−1
f(color(red)(-9)) = -18 - 1f(−9)=−18−1
f(color(red)(-9)) = -19f(−9)=−19
f(g(-3)) = -19f(g(−3))=−19