How do you find \lim _ { x \rightarrow \infty } \sqrt { x ^ { 2} + 1x - 4} - x?

1 Answer
Mar 19, 2017

1/2.

Explanation:

The Reqd. Limit =lim_(xtooo)sqrt((x^2+x-4))-x.

=lim_(xtooo)(sqrt((x^2+x-4))-x))(sqrt((x^2+x-4))+x)/(sqrt(x^2+x-4)+x)

=lim_(xtooo){(x^2+x-4)-x^2}/(sqrt(x^2+x-4)+x)

=lim_(xtooo)(x-4)/(sqrt(x^2(1+1/x-4/x^2))+x)

=lim_(xtooo)(x-4)/(xsqrt(1+1/x-4/x^2)+x)

=lim_(xtooo)(x(1-4/x))/{x(sqrt(1+1/x-4/x^2)+1)

=lim_(xtooo) (1-4/x)/(sqrt(1+1/x-4/x^2)+1)

Here, xtooorArr1/xto0, and, 1/x^2to0.

:." The Reqd. Limit="(1-0)/{sqrt(1+0-0)+1}=1/(1+1)=1/2.

Enjoy Maths.!