How do you find lim_(x->∞)(x+2sinx-1)/(x+3cosx+1)?

How do you find lim_(x->∞)(x+2sinx-1)/(x+3cosx+1)?

1 Answer
Jan 18, 2018

lim_(xrarr+oo)(x+2sinx-1)/(x+3cosx+1)=1

Explanation:

lim_(xrarr+oo)(x+2sinx-1)/(x+3cosx+1)

x->+oo
x>0

=lim_(xrarr+oo)(1+2sinx/x-1/x)/(1+3cosx/x+1/x)=1

because

  • lim_(xrarr+oo)1/x=^((1/(+oo)))0

  • lim_(xrarr+oo)sinx/x=0

|sinx/x|<=1/|x|
so

-1/|x|<=sinx/x<=1/|x|

Using the sandwich/squeeze theorem we get:

lim_(xrarr+oo)-1/|x|=0=lim_(xrarr+oo)1/|x|

Therefore ,

lim_(xrarr+oo)sinx/x=0

  • lim_(xrarr+oo)cosx/x=0

|cosx/x|<=1/|x|

-1/|x|<=cosx/x<=1/|x|

lim_(xrarr+oo)-1/|x|=0=lim_(xrarr+oo)1/|x|

Therefore,

lim_(xrarr+oo)cosx/x=0