How do you find #lim_(x->∞)(x+2sinx-1)/(x+3cosx+1)#?

How do you find #lim_(x->∞)(x+2sinx-1)/(x+3cosx+1)#?

1 Answer
Jan 18, 2018

#lim_(xrarr+oo)(x+2sinx-1)/(x+3cosx+1)=1#

Explanation:

#lim_(xrarr+oo)(x+2sinx-1)/(x+3cosx+1)#

#x->+oo#
#x>0#

#=lim_(xrarr+oo)(1+2sinx/x-1/x)/(1+3cosx/x+1/x)=1#

because

  • #lim_(xrarr+oo)1/x=^((1/(+oo)))0#

  • #lim_(xrarr+oo)sinx/x=0#

#|sinx/x|<=1/|x|#
so

#-1/|x|<=sinx/x<=1/|x|#

Using the sandwich/squeeze theorem we get:

#lim_(xrarr+oo)-1/|x|=0=lim_(xrarr+oo)1/|x|#

Therefore ,

#lim_(xrarr+oo)sinx/x=0#

  • #lim_(xrarr+oo)cosx/x=0#

#|cosx/x|<=1/|x|#

#-1/|x|<=cosx/x<=1/|x|#

#lim_(xrarr+oo)-1/|x|=0=lim_(xrarr+oo)1/|x|#

Therefore,

#lim_(xrarr+oo)cosx/x=0#