How do you find local maximum value of f using the first and second derivative tests: f(x)=x^3-2x+5f(x)=x32x+5 on the interval (-2,2)?

1 Answer
Nov 27, 2017

See below.

Explanation:

First differentiate x^3-2x+5x32x+5

d/dx(x^3-2x+5)=3x^2-2ddx(x32x+5)=3x22

equating this to zero and solving fot xx will give us the points where the tangent is horizontal .i.e. maximum and minimum values.

3x^2-2=0=>x= +-sqrt(2/3)3x22=0x=±23

We now use the second derivative test. If:

(d^2y)/(dx^2)>0d2ydx2>0 minimum value.

(d^2y)/(dx^2)<0d2ydx2<0 maximum value.

(d^2y)/(dx^2)=0d2ydx2=0 min/max or point of inflection.

Second derivative:

(d^2y)/(dx^2)(3x^2-2)=6xd2ydx2(3x22)=6x

6(+sqrt(2/3))>06(+23)>0 min value.

6(-sqrt(2/3))<06(23)<0 max value.

These are both in the interval ( -2 , 2 )(2,2)

x=-sqrt(2/3)x=23 give maximum value so:

f(-sqrt(2/3))=(-sqrt(2/3))^3-2(-sqrt(2/3))+5f(23)=(23)32(23)+5

->=(4sqrt(6))/9+5~~6.089=469+56.089

Graph of function and first derivative:

enter image source here