First differentiate x^3-2x+5x3−2x+5
d/dx(x^3-2x+5)=3x^2-2ddx(x3−2x+5)=3x2−2
equating this to zero and solving fot xx will give us the points where the tangent is horizontal .i.e. maximum and minimum values.
3x^2-2=0=>x= +-sqrt(2/3)3x2−2=0⇒x=±√23
We now use the second derivative test. If:
(d^2y)/(dx^2)>0d2ydx2>0 minimum value.
(d^2y)/(dx^2)<0d2ydx2<0 maximum value.
(d^2y)/(dx^2)=0d2ydx2=0 min/max or point of inflection.
Second derivative:
(d^2y)/(dx^2)(3x^2-2)=6xd2ydx2(3x2−2)=6x
6(+sqrt(2/3))>06(+√23)>0 min value.
6(-sqrt(2/3))<06(−√23)<0 max value.
These are both in the interval ( -2 , 2 )(−2,2)
x=-sqrt(2/3)x=−√23 give maximum value so:
f(-sqrt(2/3))=(-sqrt(2/3))^3-2(-sqrt(2/3))+5f(−√23)=(−√23)3−2(−√23)+5
->=(4sqrt(6))/9+5~~6.089→=4√69+5≈6.089
Graph of function and first derivative: