How do you find S_nSn for the geometric series a_1=162a1=162, r=1/3, n=6?

1 Answer
Dec 1, 2016

The answer is =2186/9=21869

Explanation:

Let S_nSn be the sum of a geometric series

S_n=a_1+a_1r+ ........ a_1r^n

Then, rS_n=a_1r+..................+a_1r^(n+1)

Therefore,

S_n(1-r)=a_1(1-r^(n+1))

S_n=(a_1(1-r^(n+1)))/(1-r)

a_1=162

r=1/3

n=6

S_6=162(1-(1/3)^7)/(1-1/3)

=162*3/2(1-(1/3)^7)

=243-243/3^7

=243-1/9

=2186/9