How do you find S_n for the geometric series a_1=2401, r=-1/7, n=5?

1 Answer
May 24, 2017

S_5 = 2101

Explanation:

color(white)()
Background

The general term of a geometric series is described by the formula:

a_n = ar^(n-1)

where a is the initial term and r the common ratio.

Then we find:

(1-r) sum_(n=1)^N a_n = (1-r) sum_(n=1)^N ar^(n-1)

color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)

color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)

color(white)((1-r) sum_(n=1)^N a_n) = a + color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N

color(white)((1-r) sum_(n=1)^N a_n) = a(1 - r^N)

Dividing both ends by (1-r), we find:

color(green)(sum_(n=1)^N a_n = (a(1 - r^N))/(1-r))

color(white)()
Example

In our example, a=2401=7^4, r = -1/7, N=5 and we find:

sum_(n=1)^5 a_n = (color(blue)(2401)(1-(color(blue)(-1/7))^5))/(1-(color(blue)(-1/7)))

color(white)(sum_(n=1)^5 a_n) = (7^4(1+1/7^5))/(8/7)

color(white)(sum_(n=1)^5 a_n) = (7^4+1/7)/(8/7)

color(white)(sum_(n=1)^5 a_n) = (7^5+1)/8

color(white)(sum_(n=1)^5 a_n) = 16808/8

color(white)(sum_(n=1)^5 a_n) = 2101

Alternatively, given the small number of terms, we could just add up the series:

2401-343+49-7+1 = 2101