How do you find S_n for the geometric series a_1=2401, r=-1/7, n=5?
1 Answer
Explanation:
Background
The general term of a geometric series is described by the formula:
a_n = ar^(n-1)
where
Then we find:
(1-r) sum_(n=1)^N a_n = (1-r) sum_(n=1)^N ar^(n-1)
color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)
color(white)((1-r) sum_(n=1)^N a_n) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)
color(white)((1-r) sum_(n=1)^N a_n) = a + color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N
color(white)((1-r) sum_(n=1)^N a_n) = a(1 - r^N)
Dividing both ends by
color(green)(sum_(n=1)^N a_n = (a(1 - r^N))/(1-r))
Example
In our example,
sum_(n=1)^5 a_n = (color(blue)(2401)(1-(color(blue)(-1/7))^5))/(1-(color(blue)(-1/7)))
color(white)(sum_(n=1)^5 a_n) = (7^4(1+1/7^5))/(8/7)
color(white)(sum_(n=1)^5 a_n) = (7^4+1/7)/(8/7)
color(white)(sum_(n=1)^5 a_n) = (7^5+1)/8
color(white)(sum_(n=1)^5 a_n) = 16808/8
color(white)(sum_(n=1)^5 a_n) = 2101
Alternatively, given the small number of terms, we could just add up the series:
2401-343+49-7+1 = 2101