For a geometric series:
S_n=(a(1-r^n))/(1-r)
Where:
bba is the first term, bbr is the common ratio and bbn is the nth term.
We know the first term a_1=3 and common ratio is -5
We need to find the value of n.
If we find the sum of the first n terms and then subtract the sum of the first n-1 terms, this will give us the a_nth term.
(3(1+5^(n-1)))/(1+5)=(1+(5)^(n-1))/2
(1+(5)^(n))/2-(1+(5)^(n-1))/2=a_n=46875
(1+(5)^(n)-1-(5)^(n-1))/2=46875
((5)^(n)-(5)^(n-1))/2=46875
(5)^(n)-(5)^(n-1)=93750
5^n=5^(n-1+1)
5^(n-1+1)=5^1*5^(n-1)
5^1*5^(n-1)-5^(n-1)=93750
5^(n-1)(5^1-1)=93750
5^(n-1)*4=93750
5^(n-1)=93750/4=23437.5
Taking logs:
(n-1)ln(5)=ln(23437.5)
n=ln(23437.5)/ln(5)+1~~7.251929636
n must be an integer so n=7
S_n=S_7=(3(1+5^7))/6=234378/6=39063