How do you find S_n for the geometric series a_1=3, a_n=46,875, r=-5?

2 Answers
Mar 6, 2018

S_n=39063

Explanation:

a_1=3 , r =-5 , a_n= 46875 . We know n th term of a

geometric series is a_n=a_1*r^(n-1) or 45875= 3* (-5)^(n-1) or

(-5)^(n-1) =46875/3=15625 or

((-1)*5)^(n-1) =15625 or

(-1)^(n-1)* 5^(n-1) =15625

5^(n-1) =15625 Taking log on both sides we get

(n-1) log 5 = log 15625 or (n-1) = log 15625/log5 or

(n-1)=6 :. n=7 ; (-1)^(n-1)=(-1)^6=1

Number of terms is n=7. We know sum ofn terms of a

geometric series is S_n=a_1*(r^n-1)/(r-1) or

S_n=(3*((-5)^7-1))/(-5-1)=(3*(-78125-1))/(-6) or

S_n=(3*(-78126))/(-6)=39063 [Ans]

Mar 6, 2018

39063

Explanation:

For a geometric series:

S_n=(a(1-r^n))/(1-r)

Where:

bba is the first term, bbr is the common ratio and bbn is the nth term.

We know the first term a_1=3 and common ratio is -5

We need to find the value of n.

If we find the sum of the first n terms and then subtract the sum of the first n-1 terms, this will give us the a_nth term.

(3(1+5^(n-1)))/(1+5)=(1+(5)^(n-1))/2

(1+(5)^(n))/2-(1+(5)^(n-1))/2=a_n=46875

(1+(5)^(n)-1-(5)^(n-1))/2=46875

((5)^(n)-(5)^(n-1))/2=46875

(5)^(n)-(5)^(n-1)=93750

5^n=5^(n-1+1)

5^(n-1+1)=5^1*5^(n-1)

5^1*5^(n-1)-5^(n-1)=93750

5^(n-1)(5^1-1)=93750

5^(n-1)*4=93750

5^(n-1)=93750/4=23437.5

Taking logs:

(n-1)ln(5)=ln(23437.5)

n=ln(23437.5)/ln(5)+1~~7.251929636

n must be an integer so n=7

S_n=S_7=(3(1+5^7))/6=234378/6=39063