How do you find sin(sin^-1(1/2)+cos^-1(3/5))sin(sin1(12)+cos1(35))?

1 Answer
Aug 30, 2016

(3+4sqrt 3)/103+4310.

Explanation:

Let a = sin^(-1)(1/2) in Q1, for the principal valuea=sin1(12)Q1,fortheprcipalvalue. Then,

sin a = 1/2 and cos a = sqrt(1-sin^2 a) = sqrt(1-1/4) =sqrt 3/2sina=12andcosa=1sin2a=114=32, for a in

Q1.

Let b = cos^(-1)(3/5) in Q1, for the principal valueb=cos1(35)Q1,fortheprcipalvalue. Then,

cosb = 3/5 and sin b = sqrt(1-cos^2 a) = sqrt(1-9/25) =4/5cosb=35andsinb=1cos2a=1925=45, for b in

Q1.

Now, the given expression is

sin(a+b)sin(a+b)

=sina cos b +cos a sin b=sinacosb+cosasinb

=(1/2)(3/5)+(sqrt 3/2)(4/5)=(12)(35)+(32)(45)

(3+4sqrt 3)/103+4310.

Yet, a could be in Q3, wherein cos a = - sqrt 3/2cosa=32, and, similarly, b

could be in Q4, wherein sin b = -4/5sinb=45. Considering this, the

general value is

+-3+-4sqrt 3)/10±3±43)10,

when the principal-value convention is relaxed..