Given that
\sqrt{2-i}√2−i
=(2-i)^{1/2}=(2−i)12
=(\sqrt5e^{-i\tan^{-1}(1/2)})^{1/2}=(√5e−itan−1(12))12
=(\sqrt5)^{1/2}(e^{-i\tan^{-1}(1/2)})^{1/2}=(√5)12(e−itan−1(12))12
=5^{1/4}e^{-i1/2\tan^{-1}(1/2)}=514e−i12tan−1(12)
=5^{1/4}(\cos(1/2\tan^{-1}(1/2))+i\sin(1/2\tan^{-1}(1/2)))=514(cos(12tan−1(12))+isin(12tan−1(12)))
=5^{1/4}(\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}})=514(√√5+22√5+i√√5−22√5)
\therefore |\sqrt{2-i}|
=5^{1/4}|\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}}|
=5^{1/4}\sqrt{\frac{\sqrt5+2}{2\sqrt5}+\frac{\sqrt5-2}{2\sqrt5}}
=5^{1/4}