How do you find the absolute value of sqrt(2-i)2i?

1 Answer

5^{1/4}514

Explanation:

Given that

\sqrt{2-i}2i

=(2-i)^{1/2}=(2i)12

=(\sqrt5e^{-i\tan^{-1}(1/2)})^{1/2}=(5eitan1(12))12

=(\sqrt5)^{1/2}(e^{-i\tan^{-1}(1/2)})^{1/2}=(5)12(eitan1(12))12

=5^{1/4}e^{-i1/2\tan^{-1}(1/2)}=514ei12tan1(12)

=5^{1/4}(\cos(1/2\tan^{-1}(1/2))+i\sin(1/2\tan^{-1}(1/2)))=514(cos(12tan1(12))+isin(12tan1(12)))

=5^{1/4}(\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}})=514(5+225+i5225)

\therefore |\sqrt{2-i}|

=5^{1/4}|\sqrt{\frac{\sqrt5+2}{2\sqrt5}}+i\sqrt{\frac{\sqrt5-2}{2\sqrt5}}|

=5^{1/4}\sqrt{\frac{\sqrt5+2}{2\sqrt5}+\frac{\sqrt5-2}{2\sqrt5}}

=5^{1/4}