How do you find the amplitude, period, and shift for #k(t)= cos(2pit/3)#?

1 Answer
Jul 13, 2018

As below.

Explanation:

#k(t) = cos ((2pit)/3)#

Standard form of a cosine function is #y = A cos (Bx - C) + D#

#A = 1, B = (2pi)/3, C = D = 0#

#Amplitude = |A| = 1#

#"Period ' = (2pi) / |B| = (2pi) / ((2pi)/3) = 3#

#"Phase Shift " = -C / B = 0#

#"Vertical Shift " = D = 0#

graph{cos ((2pi x)/3) [-10, 10, -5, 5]}