How do you find the amplitude, period, and shift for #y=1 +sec ( (x-pi)/3)#?

1 Answer
Nov 20, 2017

Amplitude: none
Period: #6pi#
Phase: #-pi#

Explanation:

Given a trigonometric function of the form

#y=Asec(Bx - C) + D#

Amplitude: Since the #sec# function does not have a maximum or minimum, there is not amplitude.

Period: #(2pi)/abs(B)#

Phase (i.e., horizontal) shift: #C/B#

Vertical shift: #abs(D)#

Given #y=1+sec((x-pi)/3)#

#y = sec((x-pi)/3) + 1#

#y = sec(1/3 x - pi/3) + 1#

By the formula,

Period: #(2pi)/(1//3)=6pi#

Phase shift: #(-pi//3)/(1//3)=-pi#