How do you find the amplitude, period, phase shift for y=sin(x+pi/3)y=sin(x+π3)?

1 Answer
Apr 8, 2018

See the explanation below.

Explanation:

The sine function is defined for

AA x in RR,

-1<=sinx<=1

The amplitude =1

To calculate the period of a T-periodic function

Let f(x)=sin(x+pi/3)

f(x)=f(x+T)

f(x+T)=sin(x+pi/3+T)=sin(x+pi/3)cosT+cos(x+pi/3)sinT

sin(x+pi/3)cosT+cos(x+pi/3)sinT=sin(x+pi/3)

cosT=1 and sinT=0

T=0, T=2pi, [2pi]

The period is T=2pi

The phase shift is =pi/3

graph{sin(x+pi/3) [-8.23, 17.08, -6.37, 6.29]}