How do you find the amplitude, period, phase shift given #y=sin(2pix-pi)#?

1 Answer
Jan 8, 2018

Amplitude is #1# , period is #1# and phase shift is #1/2#

Explanation:

The sinusidal function is # y= A sin(Bx+C)+D# where #A# is

amplitude , period is #(2pi)/|B|# , phase shift is #-C/|B|#, vertical

shift is #D ; y= sin(2pi*x-pi) or y= 1*sin(2pi*x-pi)+0#

#:. A=1, B=2pi , C = -pi ,D=0#

Therefore amplitude is #1# , period is #(2pi)/|B|= (2pi)/(2pi)=1#

phase shift is # -C/|B|= -(-pi)/(2pi)=1/2#

graph{sin(2pix-pi) [-10, 10, -5, 5]} [Ans]