How do you find the amplitude, period, phase shift given y=sin(2pix-pi)y=sin(2πxπ)?

1 Answer
Jan 8, 2018

Amplitude is 11 , period is 11 and phase shift is 1/212

Explanation:

The sinusidal function is y= A sin(Bx+C)+Dy=Asin(Bx+C)+D where AA is

amplitude , period is (2pi)/|B|2π|B| , phase shift is -C/|B|C|B|, vertical

shift is D ; y= sin(2pi*x-pi) or y= 1*sin(2pi*x-pi)+0D;y=sin(2πxπ)ory=1sin(2πxπ)+0

:. A=1, B=2pi , C = -pi ,D=0

Therefore amplitude is 1 , period is (2pi)/|B|= (2pi)/(2pi)=1

phase shift is -C/|B|= -(-pi)/(2pi)=1/2

graph{sin(2pix-pi) [-10, 10, -5, 5]} [Ans]