How do you find the antiderivative of #(4x^2 - 3x)e^x#?

1 Answer
Mar 14, 2018

#4e^x x^2-11e^x x+11e^x#

Explanation:

The antiderivative of a function is its integral. Here, we need to solve:

#int(4x^2-3x)e^xdx#

According to integration by parts, #intf(x)g(x)dx=f(x)intg(x)dx-intf'(x)(intg(x)dx)dx#.

Here, #f(x)=4x^2-3x# and #g(x)=e^x#.

But since #inte^xdx=e^x#, we can just write:

#e^x(4x^2-3x)-int(d/dx(4x^2-3x))e^xdx#

#e^x(4x^2-3x)-int(8x-3)e^xdx#

Integrating by parts the integral, we get:

#e^x(4x^2-3x)-e^x(8x-3)+int8e^xdx#

#e^x(4x^2-3x)-e^x(8x-3)+8e^x#

#e^x((4x^2-3x)-(8x-3)+8)#

#e^x(4x^2-3x-8x+3+8)#

#e^x(4x^2-11x+11)#

#4e^x x^2-11e^x x+11e^x#