How do you find the antiderivative of int (2x^3-1)(x^4-2x)^6dx(2x31)(x42x)6dx from [-1,1][1,1]?

1 Answer
Nov 9, 2016

int_(-1)^1(2x^3-1)(x^4-2x)^6dx=(-1094)/711(2x31)(x42x)6dx=10947

Explanation:

int_(-1)^1(2x^3-1)(x^4-2x)^6dx11(2x31)(x42x)6dx

We will apply the substitution u=x^4-2xu=x42x. Differentiating this reveals that du=(4x^3-2)dxdu=(4x32)dx. Note that the (2x^3-1)(2x31) term is exactly half this, so we can modify the integral as follows:

=1/2int_(-1)^1(x^4-2x)^6(4x^3-2)dx=1211(x42x)6(4x32)dx

Now we can substitute in our uu and dudu values. However, we also should remember to change our bounds! Take -11 and 11 and plug them into our u=x^4-2xu=x42x term. That is, the bound of -11 becomes (-1)^4-2(-1)=3(1)42(1)=3 and the bound of 11 becomes 1^4-2(1)=-1142(1)=1. Thus:

=1/2int_3^(-1)u^6du=1/2[u^7/7]_3^(-1)=1/2[(-1)^7/7-3^7/7]=1213u6du=12[u77]13=12[(1)77377]

=1/2[(-2188)/7]=(-1094)/7=12[21887]=10947