How do you find the antiderivative of int (2x^3-1)(x^4-2x)^6dx∫(2x3−1)(x4−2x)6dx from [-1,1][−1,1]?
1 Answer
Explanation:
int_(-1)^1(2x^3-1)(x^4-2x)^6dx∫1−1(2x3−1)(x4−2x)6dx
We will apply the substitution
=1/2int_(-1)^1(x^4-2x)^6(4x^3-2)dx=12∫1−1(x4−2x)6(4x3−2)dx
Now we can substitute in our
=1/2int_3^(-1)u^6du=1/2[u^7/7]_3^(-1)=1/2[(-1)^7/7-3^7/7]=12∫−13u6du=12[u77]−13=12[(−1)77−377]
=1/2[(-2188)/7]=(-1094)/7=12[−21887]=−10947