How do you find the antiderivative of int (cos^2x-sin^2x)dx(cos2xsin2x)dx from [0,pi/6][0,π6]?

1 Answer
Oct 19, 2016

int_0^(pi/6)(cos^2x-sin^2x)dx=sqrt3/4π60(cos2xsin2x)dx=34

Explanation:

int_0^(pi/6)(cos^2x-sin^2x)dxπ60(cos2xsin2x)dx

=int_0^(pi/6)(cos2x)dx=π60(cos2x)dx

=[1/2sin2x]_0^(pi/6)=[12sin2x]π60

=1/2sin2(pi/6)-1/2sin2(0)=12sin2(π6)12sin2(0)

=sqrt3/4-0=sqrt3/4=340=34