How do you find the antiderivative of int sec^2xtanx dxsec2xtanxdx?

1 Answer
Oct 27, 2016

intsec^2xtanxdx=1/2sec^2x+csec2xtanxdx=12sec2x+c

Explanation:

Method 1

now d/(dx)(secx)=secxtanxddx(secx)=secxtanx

sointsec^2xtanxdx=1/2sec^2x+c_1sec2xtanxdx=12sec2x+c1

since d/(dx)(sec^2x)=2(secx)xxsecxtanxddx(sec2x)=2(secx)×secxtanx

by the chain rule

Method 2

d/(dx)(tan^2x)=2(tanx)xxsec^2xddx(tan2x)=2(tanx)×sec2x

by the chain rule

sointsec^2xtanxdx=1/2tan^2x+c_2sec2xtanxdx=12tan2x+c2

the 2 results can be shown to be equivalent by use of

1+tan^2x=sec^2x1+tan2x=sec2x