How do you find the antiderivative of sin3xcosxdx?

2 Answers
Nov 23, 2016

sin3xcosxdx =14sin4x+C

Explanation:

no need for substitution here if you recognise that

y=sinnxdydx=nsinn1xcosx using the chain rule

so sin3xcosxdx suggests a function of the type

y=sin4x

lets check this by differentiating.

u=sinxdudx=cosx

y=u4dydx=4u3

dydx=4u3cosx=4sin3xcosx

sin3xcosxdx =14sin4x+C

Nov 23, 2016

sin4x4+C.

Explanation:

Since you have a cosine terms hanging around some sine terms, it might be helpful to try the substitution u=sinx, du=cosxdx.

Using this substitution, sin3xcosxdx=u3du.

u3du=u44+C=sin4x4+C.