How do you find the antiderivative of int sin^5(3x)cos(3x)dx?

1 Answer
Nov 3, 2016

sin^6(3x)/18+C

Explanation:

I=intsin^5(3x)cos(3x)dx

First let u=3x. Thus du=3dx and we can modify the integral accordingly:

I=1/3intsin^5(3x)cos(3x)(3dx)

I=1/3intsin^5(u)cos(u)du

Now, let v=sin(u). Differentiating shows that dv=cos(u)du. These are both already present:

I=1/3intv^5dv

Integrating using the typical power rule for integration:

I=1/3 v^6/6+C

Since v=sin(u):

I=sin^6(u)/18+C

Since u=3x:

I=sin^6(3x)/18+C