How do you find the antiderivative of ∫x2√1−x3dx?
1 Answer
Jan 14, 2017
Explanation:
Rewriting the function:
I=∫x2√1−x3dx=∫x2(1−x3)−12dx
To deal with the
I=−13∫(1−x3)−12(−3x2.dx)=−13∫u−12.du
Now use the rule
I=−13(u1212)=−23√u=−23√1−x3+C