How do you find the area between #f(x)=x^3# and #g(x)=x^3#? Calculus Using Integrals to Find Areas and Volumes Calculating Areas using Integrals 1 Answer marfre Mar 8, 2017 Area = 0 Explanation: Since both #f(x)# & #g(x)# are the same function, there is no area between them. So Area = 0 Answer link Related questions How do you find the area of circle using integrals in calculus? How do you find the area between two curves using integrals? How do you find the area of an ellipse using integrals? How do you find the area under a curve using integrals? How do you find the area of the region between the curves #y=x-1# and #y^2=2x+6# ? How do you find the area of the region bounded by the curves #y=sin(x)#, #y=e^x#, #x=0#, and #x=pi/2# ? How do you find the area of the region bounded by the curves #y=1+sqrt(x)# and #y=1+x/3# ? How do you find the area of the region bounded by the curves #y=|x|# and #y=x^2-2# ? How do you find the area of the region bounded by the curves #y=tan(x)# and #y=2sin(x)# on the... How do I find the area between the curves #y=x^2-4x+3# and #y=3+4x-x^2#? See all questions in Calculating Areas using Integrals Impact of this question 1403 views around the world You can reuse this answer Creative Commons License