How do you find the area of the region bounded by the polar curve #r=3(1+cos(theta))# ?

1 Answer
Sep 7, 2014

The area of the region enclosed by the curve #r=3(1=cos theta)# can be found by the double integral
#int_0^{2pi}int_0^{3(1+cos theta)}rdrd theta=27/2pi#

Let us evaluate the double integral.
#int_0^{2pi}int_0^{3(1+cos theta)}rdrd theta#
by Power Rule,
#=int_0^{2pi}[r^2/2]_0^{3(1+cos theta)}d theta#
#=int_0^{2pi}{[3(1+cos theta)]^2}/2d theta#
#=9/2int_0^{2pi}(1+2cos theta+cos^2 theta)d theta#
by #cos^2 theta=1/2(1+cos 2theta)#,
#=9/2int_0^{2pi}(3/2+2cos theta+1/2cos2theta)d theta#
#=9/2[3/2theta+2sin theta+1/4sin2theta]_0^{2pi}#
#=9/2cdot3/2(2pi)=27/2pi#