How do you find the asymptotes for f(x) =(2x^2-5x+6)/(x+2)f(x)=2x25x+6x+2?

1 Answer
Dec 16, 2016

The vertical asymptote is x=-2x=2
The slant asymptote is y=2x-9y=2x9
No horizontal asymptote

Explanation:

As we cannot divide by 00, x!=-2x2

The degree of the numerator is >> than the degree of the denominator, we expect a slant asymptote.

Let's do a long division

color(white)(aaaa)aaaa2x^2-5x+62x25x+6x+2x+2

color(white)(aaaa)aaaa2x^2+4x2x2+4xcolor(white)(aaaa)aaaa2x-92x9

color(white)(aaaaa)aaaaa0-9x+609x+6

color(white)(aaaaaaa)aaaaaaa-9x-189x18

color(white)(aaaaaaaaaaaa)aaaaaaaaaaaa+24+24

So,

(2x^2-5x+6)/(x+2)=2x-9+24/(x+2)2x25x+6x+2=2x9+24x+2

The slant asymptote is y=2x-9y=2x9

For the horizontal asymptotes, we calculate the limita as x_>oox>

lim_(x->+-oo)f(x)=lim_(x->+-oo)2x^2/x=lim_(x->+-oo)2x=+-oo

There is no horizontal asymptote.

graph{(y-(2x^2-5x+6)/(x+2))(y-2x+9)=0 [-93.7, 93.9, -46.8, 46.9]}