How do you find the asymptotes for f(x)=(2x^3+3x^2+x)/(6x^2+x-1)f(x)=2x3+3x2+x6x2+x1?

1 Answer
Jul 5, 2018

The vertical asymptote is x=1/3x=13. No horizontal asymptote. The slant asymptote is y=1/3x+4/9y=13x+49

Explanation:

The numerator is

2x^3+3x^2+x=x(2x^2+3x+1)2x3+3x2+x=x(2x2+3x+1)

=x(2x+1)(x+1)=x(2x+1)(x+1)

The denominator is

6x^2+x-1=(3x-1)(2x+1)6x2+x1=(3x1)(2x+1)

The function is

f(x)=(2x^3+3x^2+x)/(6x^2+x-1)f(x)=2x3+3x2+x6x2+x1

=(xcancel(2x+1)(x+1))/((3x-1)cancel(2x+1))

=(x(x+1))/(3x-1)

As the denominator must de !=0, therefore

3x-1!=0, =>, x!=1/3

The vertical asymptote is x=1/3

There is no horizontal asymptote, as

lim_(x->oo)f(x)=lim_(x->oo)(x^2)/(3x)=lim_(x->oo)x/3=+oo

lim_(x->-oo)f(x)=lim_(x->-oo)(x^2)/(3x)=lim_(x->-oo)x/3=-oo

As the degree of the numerator is > the degree of the denominator, there is a slant asymptote.

Perform a long division

color(white)(aaaa)x^2+xcolor(white)(aaaa)|3x-1

color(white)(aaaa)x^2-1/3xcolor(white)(aaaa)|1/3x+4/9

color(white)(aaaaa)0+4/3x

color(white)(aaaaaaa)+4/3x+0

color(white)(aaaaaaa)+4/3x-4/9

color(white)(aaaaaaaaa)+0+4/9

Therefore,

f(x)=(x^2+x)/(3x-1)=(1/3x+4/9)+(4/9)/(3x-1)

lim_(x->+oo)(f(x)-(1/3x+4/9))=lim_(x->+oo)(4/9)/(3x-1)=0^+

lim_(x->-oo)(f(x)-(1/3x+4/9))=lim_(x->-oo)(4/9)/(3x-1)=0^-

The slant asymptote is

y=1/3x+4/9

graph{(y-(x(x+1))/(3x-1))(y-1/3x-4/9)=0 [-4.382, 4.386, -2.19, 2.193]}