The numerator is
2x^3+3x^2+x=x(2x^2+3x+1)2x3+3x2+x=x(2x2+3x+1)
=x(2x+1)(x+1)=x(2x+1)(x+1)
The denominator is
6x^2+x-1=(3x-1)(2x+1)6x2+x−1=(3x−1)(2x+1)
The function is
f(x)=(2x^3+3x^2+x)/(6x^2+x-1)f(x)=2x3+3x2+x6x2+x−1
=(xcancel(2x+1)(x+1))/((3x-1)cancel(2x+1))
=(x(x+1))/(3x-1)
As the denominator must de !=0, therefore
3x-1!=0, =>, x!=1/3
The vertical asymptote is x=1/3
There is no horizontal asymptote, as
lim_(x->oo)f(x)=lim_(x->oo)(x^2)/(3x)=lim_(x->oo)x/3=+oo
lim_(x->-oo)f(x)=lim_(x->-oo)(x^2)/(3x)=lim_(x->-oo)x/3=-oo
As the degree of the numerator is > the degree of the denominator, there is a slant asymptote.
Perform a long division
color(white)(aaaa)x^2+xcolor(white)(aaaa)|3x-1
color(white)(aaaa)x^2-1/3xcolor(white)(aaaa)|1/3x+4/9
color(white)(aaaaa)0+4/3x
color(white)(aaaaaaa)+4/3x+0
color(white)(aaaaaaa)+4/3x-4/9
color(white)(aaaaaaaaa)+0+4/9
Therefore,
f(x)=(x^2+x)/(3x-1)=(1/3x+4/9)+(4/9)/(3x-1)
lim_(x->+oo)(f(x)-(1/3x+4/9))=lim_(x->+oo)(4/9)/(3x-1)=0^+
lim_(x->-oo)(f(x)-(1/3x+4/9))=lim_(x->-oo)(4/9)/(3x-1)=0^-
The slant asymptote is
y=1/3x+4/9
graph{(y-(x(x+1))/(3x-1))(y-1/3x-4/9)=0 [-4.382, 4.386, -2.19, 2.193]}