How do you find the asymptotes for f(x)=(x^2+x-2)/(x^2-x+2)f(x)=x2+x−2x2−x+2?
1 Answer
Feb 14, 2016
Re-express as
Explanation:
f(x) = (x^2+x-2)/(x^2-x+2)f(x)=x2+x−2x2−x+2
=((x^2-x+2)+(2x-4))/(x^2-x+2)=(x2−x+2)+(2x−4)x2−x+2
=1 + (2x-4)/(x^2-x+2)=1+2x−4x2−x+2
Now
Delta = b^2-4ac = (-1)^2-(4*1*2) = 1-8 = -7
So this quadratic has no Real zeros.
The numerator
Therefore
So the only asymptote is a horizontal one:
graph{(x^2+x-2)/(x^2-x+2) [-10, 10, -5, 5]}