How do you find the asymptotes for h(x) = (x^3-8)/(x^2-5x+6)?

1 Answer
Feb 15, 2017

Slant asymptote { #y=x+7.
Vertical asymptote : x = 3.

Explanation:

graph{((x^2+4x+4)/(x-3)-y)(y-x-7.9)(x-2+.01y)=0 [-45, 45, -20, 25]}

The graph is a hyperbola

(y-x-7)(x-3)=15 having asymptotes given by

(y-x-7)(x-3)=0, with a hole at (2, -16)

h =((x-2)/(x-2))((x^2+4x+4)/(x-3)).

Sans the hole at x = 2,

h=(x^2+4x+4)/(x-3)

=x+7+25/(x-3).

So, y = quotient=x+7 gives the slant asymptote and

x-3 = 0 gives the vertical asymptote.