How do you find the asymptotes for y=(x^3-2x^2-x+2)/(x^2-4)?

2 Answers
Jan 7, 2017

The vertical asymptote is x=-2
A hole at x=2
The slant asymptote is y=x-2
No horizontal asymptote.

Explanation:

The denominator is x^2-4=(x+2)(x-2)

Let's do a long division

color(white)(aaaa)x^3-2x^2-x+2color(white)(aaaa)x^2-4

color(white)(aaaa)x^3color(white)(aaaaaa)-4xcolor(white)(aaaaaaa)x-2

color(white)(aaaa)0-2x^2color(white)(aaa)3x+2

color(white)(aaaaaa)-2x^2color(white)(aaaaaa)+8

color(white)(aaaaaaaaaa)0color(white)(aaa)3x-6

Therefore,

(x^3-2x^2-x+2)/(x^2-4)=(x-2)+(3(x-2))/(x^2-4)

=(x-2)+(3cancel((x-2)))/((x+2)cancel((x-2))

=(x-2)+3/(x+2)

Let f(x)=(x-2)+3/(x+2)

As we cannot divide by 0, x!=-2

The vertical asymptote is x=-2

lim_(x->-oo)f(x)-(x-2)= lim_(x->-oo)3/x=0^-

lim_(x->+oo)f(x)-(x-2)= lim_(x->+oo)3/x=0^+

The slant asymptote is y=x-2

graph{(y-(x^3-2x^2-x+2)/(x^2-4))(y-x+2)(y-50x-100)=0 [-23.33, 22.3, -16.34, 6.48]}

Jan 7, 2017

Alternative format for long division + graph

Explanation:

Note that I have used place keepers where there is no value solely so that things line up in formatting. Example 0x^2

" "x^3-2x^2-x+2
color(red)(x)(x^2-4) ->ul( x^3+0x^2-4x) larr" subtract"
" "0color(white)(.) -2x^2+3x+2
color(red)(-2)(x^2-4)->ul(color(white)(.) -2x^2 +0x+8)larr" subtract"
color(red)("Remainder") ->" "0color(white)(.)+3x-6

y" "=" "(x^3-2x-x+2)/(x^2-4)" " =" " (x-2) + (3x-6)/(x^2-4)

Tony B