How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#?
1 Answer
Jan 4, 2016
Calculate the binomial coefficient and appropriate powers of
#1088640#
Explanation:
#(2x+3)^10 = sum_(k=0)^10 ((10),(k)) 2^(10-k)3^k x^(10-k)#
The term in
#((10),(4)) 2^6*3^4#
#=(10!)/(4! 6!)*64*81#
#=(10xx9xx8xx7)/(4xx3xx2xx1)*64*81#
#=210*64*81 = 1088640#
Instead of calculating