The formula to find the mid-point of a line segment give the two end points is:
#M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)#
Where #M# is the midpoint and the given points are:
#(color(red)(x_1), color(red)(y_1))# and #(color(blue)(x_2), color(blue)(y_2))#
Substituting the values from the points in the problem gives:
#(1, 4) = ((color(red)(5) + color(blue)(x_2))/2 , (color(red)(1) + color(blue)(y_2))/2)#
We can now solve for #color(blue)(x_2)# and #color(blue)(y_2)#
#(color(red)(5) + color(blue)(x_2))/2 = 1#
#color(green)(2) xx (color(red)(5) + color(blue)(x_2))/2 = color(green)(2) xx 1#
#cancel(color(green)(2)) xx (color(red)(5) + color(blue)(x_2))/color(green)(cancel(color(black)(2))) = 2#
#color(red)(5) + color(blue)(x_2) = 2#
#color(red)(5) - color(green)(5) + color(blue)(x_2) = 2 - color(green)(5)#
#0 + color(blue)(x_2) = -3#
#color(blue)(x_2) = -3#
#(color(red)(1) + color(blue)(y_2))/2 = 4#
#color(green)(2) xx (color(red)(1) + color(blue)(y_2))/2 = color(green)(2) xx 4#
#cancel(color(green)(2)) xx (color(red)(1) + color(blue)(y_2))/color(green)(cancel(color(black)(2))) = 8#
#color(red)(1) + color(blue)(y_2) = 8#
#color(red)(1) - color(green)(1) + color(blue)(y_2) = 8 - color(green)(1)#
#0 + color(blue)(y_2) = 7#
#color(blue)(y_2) = 7#
The Other End Point Is: #(color(blue)(-3), color(blue)(7))#