How do you find the coordinates of the vertices, foci, and the equation of the asymptotes for the hyperbola #(y-4)^2/16-(x+2)^2/9=1#?

1 Answer

Given equation of hyperbola:

#\frac{(y-4)^2}{4^2}-\frac{(x+2)^2}{3^2}=1#

Comparing above equation with standard form of vertical hyperbola: #\frac{Y^2}{a^2}-\frac{X^2}{b^2}=1# we get

#X=x+2, Y=y-4, a=4, b=3#

#\text{eccentricity}, e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{3^2}{4^2}}=5/4#

Center of hyperbola:

#X=0, Y=0#

#x+2=0, y-4=0#

#x=-2, y=4#

#\text{Center}\equiv(-2, 4)#

Now, the vertices of hyper bola

#X=0, Y=\pma#

#x+2=0, y-4=\pm4#

#x=-2, y=4\pm4#

#\text {Vertices} (-2, 8)\ & \ (-2, 0)#

Now, the focii of hyper bola

#X=0, Y=\pm ae#

#x+2=0, y-4=\pm 4\cdot 5/4#

#x=-2, y=4\pm5#

#\text {focii}, (-2, 9)\ &\ (-2, -1)#

Asymptotes of hyperbola

#Y=\pma/bX#

#y-4=\pm4/3(x+2)#

#y=\pm4/3(x+2)+4#