How do you find the coordinates of the vertices, foci, and the equation of the asymptotes for the hyperbola (y-4)^2/16-(x+2)^2/9=1(y4)216(x+2)29=1?

1 Answer

Given equation of hyperbola:

\frac{(y-4)^2}{4^2}-\frac{(x+2)^2}{3^2}=1(y4)242(x+2)232=1

Comparing above equation with standard form of vertical hyperbola: \frac{Y^2}{a^2}-\frac{X^2}{b^2}=1Y2a2X2b2=1 we get

X=x+2, Y=y-4, a=4, b=3X=x+2,Y=y4,a=4,b=3

\text{eccentricity}, e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{3^2}{4^2}}=5/4eccentricity,e=1+b2a2=1+3242=54

**Center of hyperbola: **

X=0, Y=0X=0,Y=0

x+2=0, y-4=0x+2=0,y4=0

x=-2, y=4x=2,y=4

\text{Center}\equiv(-2, 4)Center(2,4)

Now, the vertices of hyper bola

X=0, Y=\pmaX=0,Y=±a

x+2=0, y-4=\pm4x+2=0,y4=±4

x=-2, y=4\pm4x=2,y=4±4

\text {Vertices} (-2, 8)\ & \ (-2, 0)

Now, the focii of hyper bola

X=0, Y=\pm ae

x+2=0, y-4=\pm 4\cdot 5/4

x=-2, y=4\pm5

\text {focii}, (-2, 9)\ &\ (-2, -1)

Asymptotes of hyperbola

Y=\pma/bX

y-4=\pm4/3(x+2)

y=\pm4/3(x+2)+4