Let y=3x^{ln(x)}y=3xln(x), then ln(y)=ln(3x^{ln(x)})=ln(3)+ln(x^{ln(x)})=ln(3)+(ln(x))^{2}ln(y)=ln(3xln(x))=ln(3)+ln(xln(x))=ln(3)+(ln(x))2 (using the properties that ln(AB)=ln(A)+ln(B)ln(AB)=ln(A)+ln(B) for A,B > 0A,B>0 and ln(A^{p})=pln(A)ln(Ap)=pln(A) for A > 0A>0).
Now differentiate \ln(y)=ln(3)+(ln(x))^{2}ln(y)=ln(3)+(ln(x))2 with respect to xx, keeping in mind that yy is a function of xx and using the Chain Rule to get \frac{1}{y}\cdot \frac{dy}{dx}=2(ln(x))^{1}\cdot \frac{1}{x}=\frac{2\ln(x)}{x}1y⋅dydx=2(ln(x))1⋅1x=2ln(x)x.
Multiplying both sides of this last equation by y=3x^{ln(x)}y=3xln(x) helps us see that \frac{dy}{dx}=3x^{ln(x)}\cdot \frac{2\ln(x)}{x}=6x^{ln(x)-1}ln(x)dydx=3xln(x)⋅2ln(x)x=6xln(x)−1ln(x). This is valid as long as x > 0x>0.