How do you find the derivative of 8x^2+9x+128x2+9x+12?

2 Answers
Apr 14, 2018

d/dx[8x^2+9x+12]=16x+9ddx[8x2+9x+12]=16x+9

Explanation:

Remember that:

d/dx[x^n]=nx^(n-1)ddx[xn]=nxn1 if nn is a constant.

Therefore, the derivative is:

8*2x^(2-1)+9*1*x^(1-1)+12*0*x^(0-1)82x21+91x11+120x01

=>16x^(1)+9x^(0)+016x1+9x0+0

=>16x+916x+9

That is the answer!

Apr 14, 2018

16x+916x+9

Explanation:

"differentiate each term using the "color(blue)"power rule"differentiate each term using the power rule

•color(white)(x)d/dx(ax^n)=nax^(n-1)xddx(axn)=naxn1

rArrd/dx(8x^2+9x+12)=16x+9ddx(8x2+9x+12)=16x+9