How do you find the derivative of cos2x-5cos^2x?

2 Answers
May 4, 2018

3sin2x

Explanation:

"differentiate the terms using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

d/dx(cos2x)=-2sin2x

d/dx(-5cos^2x)=10sinxcosx=5sin2x

rArrd/dx(cos2x-5cos^2x)

=-2sin2x+5sin2x=3sin2x

May 4, 2018

3sin2x

Explanation:

Given: d/dx(cos2x-5cos^2x).

=d/dx(cos2x)-d/dx(5cos^2x)

=d/dx(cos2x)-5d/dx(cos^2x)

Using the chain rule,

d/dx(cos2x)

=2*-sin2x

=-2sin2x

For the second part, We find: d/dx(cos^2x).

Let u=cosx,(du)/dx=-sinx, :.f=u^2,(df)/(du)=2u.

So, d/dx(cos^2x)=-2usinx

=-2cosxsinx

=-sin2x (because 2cosxsinx=sin2x)

So, the whole differential becomes:

=-2sin2x-5(-sin2x)

=-2sin2x+5sin2x

=3sin2x