How do you find the derivative of f(x)=-4x^5+3x^2-5/x^2?

1 Answer
Apr 9, 2017

d/(d x) f(x)=(-20x^(16)+6x^5-10x)/x^4

Explanation:

f(x)=-4x^5+3x^2-5/x^2

d/(d x) f(x)=color(red)(d/(d x)( -4x^5))+color(blue)( d/(d x)(3x^2))-color(green)(d/(d x)(5/x^2))

color(red)(d/(d x)( -4x^5))=-20x^4

color(blue)(d/(d x)(3x^2))=6x

color(green)(d/(d x)(5/x^2))=(0*x^2-2x*5)/(x^2)^2=(-10x)/x^4

d/(d x) f(x)=-20x^4+6x-(10x)/x^4

d/(d x) f(x)=(-20x^(16)+6x^5-10x)/x^4