How do you find the derivative of f(x)=ln(root3(x-1)/(x+1))f(x)=ln(3x1x+1)?

1 Answer
Mar 8, 2017

f'(x)=frac{-2(x-2)}{3(x-1)(x+1)}

Explanation:

The derivative of lnu = (u')/u
Using this fact, we can derive f(x)

f(x)=ln(frac{root3(x-1)}{x+1})

f'(x)=frac{(frac{(x+1)(1/3)(x-1)^(-2/3)-(x-1)^(1/3)}{(x+1)^2})}{(frac{(x-1)^(1/3)}{x+1})}

f'(x)=(frac{cancel((x-1)^(1/3))(frac{x+1}{3(x-1)}-1)}{(x+1)^2})(frac{x+1}{cancel((x-1)^(1/3))})

f'(x)=frac{(frac{x+1-3x+3}{3(x-1)})}{x+1}

f'(x)=frac{-2x+4}{3(x-1)(x+1)}

f'(x)=frac{-2(x-2)}{3(x-1)(x+1)}