How do you find the derivative of f(x)=logx(3)?

1 Answer
Jun 1, 2016

dfdx(x)=loge3xlog2e(x)

Explanation:

y=logx3=logb3logbx for any convenient basis b

Calling now g(x,y)=ylogexloge3=0 after taking b=e, we have

dg=gxdx+gydy=0

then

dydx=gxgy=(yx)logex=yxloge(x)=loge3xlog2e(x)