How do you find the derivative of f(x)=sqrt(x+1)?

1 Answer
Mar 3, 2018

f'(x)=1/(2sqrt(x+1))

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "f(x)=g(h(x))" then"

f'(x)=g'(h(x))xxh'(x)larrcolor(blue)"chain rule"

f(x)=sqrt(x+1)=(x+1)^(1/2)

rArrf'(x)=1/2(x+1)^(-1/2)xxd/dx(x+1)

color(white)(rArrf'(x))=1/(2(x+1)^(1/2))=1/(2sqrt(x+1))