How do you find the derivative of sin^2(8x)-(pi)x?

1 Answer
Aug 13, 2017

frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 sin(16 x) - pi

Explanation:

We have: sin^(2)(8 x) - (pi) x

= (sin(8 x))^(2) - pi x

First, let's apply the difference rule:

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = frac(d)(dx)((sin(8 x))^(2)) - frac(d)(dx)(pi x)

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = frac(d)(dx) ((sin(8 x))^(2)) - pi

Then, let's use the chain rule.

Let u = sin(8 x) Rightarrow u' = cos(8 x), v = u^(2) Rightarrow v' = 2 u and w = 8 x Rightarrow w' = 8:

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = u' cdot v' cdot w' - pi

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = cos(8 x) cdot 2 u cdot 8 - pi

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot 2 u cos(8 x) - pi

Now, let's replace u with sin(8 x):

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot 2 sin(8 x) cos(8 x) - pi

Let's apply the double angle formula for sin(x); sin(2 x) = 2 sin(x) cos(x):

Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot sin(2 cdot 8 x) - pi

therefore frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 sin(16 x) - pi