We have: sin^(2)(8 x) - (pi) x
= (sin(8 x))^(2) - pi x
First, let's apply the difference rule:
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = frac(d)(dx)((sin(8 x))^(2)) - frac(d)(dx)(pi x)
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = frac(d)(dx) ((sin(8 x))^(2)) - pi
Then, let's use the chain rule.
Let u = sin(8 x) Rightarrow u' = cos(8 x), v = u^(2) Rightarrow v' = 2 u and w = 8 x Rightarrow w' = 8:
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = u' cdot v' cdot w' - pi
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = cos(8 x) cdot 2 u cdot 8 - pi
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot 2 u cos(8 x) - pi
Now, let's replace u with sin(8 x):
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot 2 sin(8 x) cos(8 x) - pi
Let's apply the double angle formula for sin(x); sin(2 x) = 2 sin(x) cos(x):
Rightarrow frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 cdot sin(2 cdot 8 x) - pi
therefore frac(d)(dx) ((sin(8 x))^(2) - pi x) = 8 sin(16 x) - pi