How do you find the derivative of sinx(sinx+cosx)?

1 Answer
Apr 10, 2018

sin2x+cos2x

Explanation:

"differentiate using the "color(blue)"product rule"

"Given "y=g(x)h(x)" then"

dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"

g(x)=sinxrArrg'(x)=cosx

h(x)=sinx+cosxrArrh'(x)=cosx-sinx

rArrdy/dx=sinx(cosx-sinx)+cosx(sinx+cosx)

color(white)(rArrdy/dx)=sinxcosx-sin^2x+sinxcosx+cos^2x

color(white)(rArrdy/dx)=2sinxcosx+cos^2x-sin^2x

color(white)(rArrdy/dx)=sin2x+cos2x