How do you find the derivative of sinx(sinx+cosx)?
1 Answer
Apr 10, 2018
Explanation:
"differentiate using the "color(blue)"product rule"
"Given "y=g(x)h(x)" then"
dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"
g(x)=sinxrArrg'(x)=cosx
h(x)=sinx+cosxrArrh'(x)=cosx-sinx
rArrdy/dx=sinx(cosx-sinx)+cosx(sinx+cosx)
color(white)(rArrdy/dx)=sinxcosx-sin^2x+sinxcosx+cos^2x
color(white)(rArrdy/dx)=2sinxcosx+cos^2x-sin^2x
color(white)(rArrdy/dx)=sin2x+cos2x