How do you find the derivative of #sqrt(x^2+y^2)#?

1 Answer
Jun 23, 2015

To find #d/dx(sqrt(x^2+y^2))#, as part of an implicit differentiation problem, use the chain rule.

Explanation:

#d/dx(sqrtx) = 1/(2sqrtx)#, so

#d/dx(sqrtu) = 1/(2sqrtu) (du)/dx#.

#d/dx(sqrt(x^2+y^2)) = 1/(2sqrt(x^2+y^2)) * d/dx(x^2+y^2)#

# = 1/(2sqrt(x^2+y^2))(2x+2y dy/dx)#

# =1/(2sqrt(x^2+y^2))2x+ 1/(2sqrt(x^2+y^2))2y dy/dx #

# =x/sqrt(x^2+y^2)+ y/sqrt(x^2+y^2) dy/dx #

In order to solve for #dy/dx# you will, of course, need the rest of the derivative of the rest of the original equation.