How do you find the derivative of sqrt(x^2+y^2)√x2+y2?
1 Answer
Jun 23, 2015
To find
Explanation:
= 1/(2sqrt(x^2+y^2))(2x+2y dy/dx)=12√x2+y2(2x+2ydydx)
=1/(2sqrt(x^2+y^2))2x+ 1/(2sqrt(x^2+y^2))2y dy/dx =12√x2+y22x+12√x2+y22ydydx
=x/sqrt(x^2+y^2)+ y/sqrt(x^2+y^2) dy/dx =x√x2+y2+y√x2+y2dydx
In order to solve for