How do you find the derivative of y^2=2+xyy2=2+xy?

1 Answer
Feb 24, 2017

(dy)/(dx)=y/(2y-x)dydx=y2yx

Explanation:

y^2=2+xyy2=2+xy

rarr color(white)("XX")y^2-xy=2XXy2xy=2

rarr color(white)("XX")(d(y^2-xy))/(dx)=(d (2))/(dx)XXd(y2xy)dx=d(2)dx

rarr color(white)("XX")(d(y^2))/(dx)-(d(xy))/(dx)=0XXd(y2)dxd(xy)dx=0

rarr color(white)("XX")2y(dy)/(dx)-(y+x(dy)/(dx))=0XX2ydydx(y+xdydx)=0
color(white)("XXXXXXXXXXXX")XXXXXXXXXXXX(using the Chain and Product rules)

rarr color(white)("XX")2y(dy)/(dx)-x(dy)/(dx)=yXX2ydydxxdydx=y

rarr color(white)("XX")(dy)/(dx)(2y-x)=yXXdydx(2yx)=y

rarr color(white)("XX")(dy)/(dx)=y/(2y-x)XXdydx=y2yx