y^2=2+xyy2=2+xy
rarr color(white)("XX")y^2-xy=2→XXy2−xy=2
rarr color(white)("XX")(d(y^2-xy))/(dx)=(d (2))/(dx)→XXd(y2−xy)dx=d(2)dx
rarr color(white)("XX")(d(y^2))/(dx)-(d(xy))/(dx)=0→XXd(y2)dx−d(xy)dx=0
rarr color(white)("XX")2y(dy)/(dx)-(y+x(dy)/(dx))=0→XX2ydydx−(y+xdydx)=0
color(white)("XXXXXXXXXXXX")XXXXXXXXXXXX(using the Chain and Product rules)
rarr color(white)("XX")2y(dy)/(dx)-x(dy)/(dx)=y→XX2ydydx−xdydx=y
rarr color(white)("XX")(dy)/(dx)(2y-x)=y→XXdydx(2y−x)=y
rarr color(white)("XX")(dy)/(dx)=y/(2y-x)→XXdydx=y2y−x