How do you find the derivative of #y=2xe^x-2e^x#?

2 Answers
Jun 4, 2016

I found: #y'=2xe^x#

Explanation:

We can use the Product Rule to tackle #2xe^x# and remember that the derivative of #e^x# is #e^x# itself.
We get:
#y'=cancel(2e^x)+2xe^xcancel(-2e^x)=2xe^x#

Jun 4, 2016

#(d y)/(d x)=2e^x-2e^x l n(e)+2xe^x l n(e)#

Explanation:

#(d y)/(d x)=2 x e^x-2 e^x=?#

#(d y)/(d x)=2*e^x+2x*e^x*l n(e)-2e^x*l n(e)#

#(d y)/(d x)=2e^x-2e^x l n(e)+2xe^x l n(e)#