How do you find the derivative of y= a^3 + cos^3 x y=a3+cos3x?
1 Answer
Jun 25, 2016
Explanation:
Here the variable is x and a is a constant.
color(orange)"Reminder:"d/dx"(constant)"=0Reminder:ddx(constant)=0 Express
cos^3x=(cosx)^3cos3x=(cosx)3 and differentiate using the
color(blue)"chain rule and power rule"chain rule and power rule
d/dx(f(g(x)))=f'(g(x)).g'(x)........ (A)
"----------------------------------------------------"
f(g(x))=(cosx)^3rArrf'(g(x))=3(cosx)^2=3cos^2x
g(x)=cosxrArrg'(x)=-sinx
"----------------------------------------------------"
Substitute these values into(A)
rArr3cos^2x(-sinx)=-3sinxcos^2x So y=
a^3+cos^3x
rArrdy/dx=0-3sinxcos^2x=-3sinxcos^2x