How do you find the derivative of y = sin(tan 2x)?

1 Answer
Nov 13, 2015

(2cos(tan(2x)))/(cos^2(2x))

Explanation:

You must use the chain rule: this means that

(f(g(h(x)))' = f'(g(h(x))) * g'(h(x)) * h'(x)

In your case, we have:

  • f(x)=sin(x), and thus f'(x)=cos(x);
  • g(x)=tan(x), and thus g'(x)=1/cos^2(x);
  • h(x)=2x, and thus h'(x)=2.

Plugging these functions into the original formula gives:

  • f'(g(h(x))) = cos(tan(2x))
  • g'(h(x)) = 1/(cos^2(2x))
  • h'(x) = 2

Multiplying the three, you get

(2cos(tan(2x)))/(cos^2(2x))