usinf logarithmic differentiation
y=(sintheta)^(tantheta)y=(sinθ)tanθ
lny=ln(sintheta)^(tantheta)lny=ln(sinθ)tanθ
by laws of logs
lny=tanthetaln(sintheta)lny=tanθln(sinθ)
now differentiate wrt" " xwrt x
d/dx(lny=tanthetaln(sintheta))ddx(lny=tanθln(sinθ))
RHS" "RHS will need the product rule
1/y(dy)/(dx)=sec^2thetalnsintheta+tantheta1/sinthetaxxcostheta1ydydx=sec2θlnsinθ+tanθ1sinθ×cosθ
1/y(dy)/(dx)=sec^2thetalnsintheta+cancel((sintheta/costhetaxxcostheta/sintheta))^(=1)
1/y(dy)/(dx)=sec^2thetalnsintheta+1
(dy)/(dx)=y(sec^2thetalnsintheta+1)
(dy)/(dx)=(sintheta)^(tantheta)(sec^2thetalnsintheta+1)