As you cannot divide by #0#, the denominator is #!=0#
#4-x^2!=0#
#(2+x)(2-x)!=0#
#=>#, #x!=-2# and #x!=2#
Therefore,
The domain is #x in (-oo,-2)uu(-2,2)uu(2,+oo)#
Let
#y=(3+x^2)/(4-x^2)#
#y(4-x^2)=3+x^2#
#4y-yx^2=3+x^2#
#x^2(1+y)=4y-3#
#x^2=(4y-3)/(1+y)#
#x=sqrt((4y-3)/(1+y))#
Therefore,
#(4y-3)/(1+y)>=0#
#=>#, #y!=-1#
Let #g(y)=(4y-3)/(1+y)#
We build a sign chart
#color(white)(aaaa)##y##color(white)(aaaa)##-oo##color(white)(aaaaaa)##-1##color(white)(aaaaaaa)##3/4##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##1+y##color(white)(aaaaaa)##-##color(white)(aaa)##||##color(white)(aaaa)##+##color(white)(aaaaaaa)##+#
#color(white)(aaaa)##4y-3##color(white)(aaaaa)##-##color(white)(aaa)##||##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+#
#color(white)(aaaa)##g(y)##color(white)(aaaaaaa)##+##color(white)(aaa)##||##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+#
Therefore,
#g(y)>=0# when #y in (-oo,-1)uu [3/4,+oo)#
graph{(3+x^2)/(4-x^2) [-12.66, 12.65, -6.33, 6.33]}