How do you find the domain and range of (x - 2 )/ (x^2- 16)x2x216?

1 Answer
Oct 12, 2017

Domain : x in RR | x != -4, x != 4 ,in interval notation , (-oo, -4)uu(-4,4) uu(4,oo)
Range : f(x) in RR or (-oo , oo)

Explanation:

f(x)= (x-2)/(x^2-16) = (x-2)/((x+4)(x-4)) .

Domain (input x) : Denominator should not be zero ,otherwise

f(x) will be undefined :.x+4 != 0 or x != -4 and

x-4 != 0 or x != 4 , so x can be any real number except

x=4 or x= -4

Domain : x in RR | x != -4, x != 4 or

in interval notation , (-oo, -4)uu(-4,4) uu(4,oo)

Range : f(x) can be any real number

Range : f(x) in RR or (-oo , oo)

graph{(x-2)/(x^2-16) [-10, 10, -5, 5]}